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Abstract

A direct application of classical portfolio selection theory is problematic for the small investor,

since transaction costs in the form of bank and broker fees exist. Particularly minimum fees

force the investor to choose a rather small selection of assets. This leads to an optimization

problem which juxtaposes the transaction costs against the risk costs arising with portfolios

consisting of only a few assets. Despite the non-convex and thus complex optimization, an

algorithmic solution turns out to be very fast and precise. An empirical study shows that for

smaller investment volumes, transaction costs dominate risk costs, so that optimal portfolios

contain only a very small number of assets.

Keywords: portfolio selection, transaction costs, non-convex optimization

JEL Classification: C 61, G 11



1 Introduction

Classical portfolio selection theory calls for the investor to diversify his portfolio and divide

his wealth among a large number of securities. If the private investor with limited investment

volume seeks to do this, he is forced to spread his purchasing power so thin that most of the

assets enter his portfolio with only a few dollars invested. While optimal in a theoretical sense,

in practice this procedure would be very expensive because of the transaction costs associated

with each security bought. Hence the optimal portfolio selection in the presence of transaction

costs might differ from the classical solution. Particularly for the small investor, transaction

costs in the form of minimum fees play a decisive role, since they appear with each transaction,

independent of its size. These minimum fees make the transaction cost function nonlinear,

producing a comparably complex optimization problem.

However, the finance industry offers a broad range of products which promise the small investor

to reap the benefits of diversification without the curse of high transaction costs due to small

investment amounts. A very popular alternative to a direct investment in single stocks are

mutual funds. But although direct transaction costs are kept to a minimum, there are other

types of costs associated with investments in mutual funds, particularly premiums and periodic

management fees. They are smaller for passively managed index tracking funds, but are still

not negligible.

A second alternative are index certificates. These securities, which are issued by a growing

number of banks, entitle the holder to participate directly at the performance of the underlying

index, that is, to receive an amount of money equivalent to the value of the index at maturity.

As issuers usually sell index certificates at a price equal to the current index value, they seem

to be free of bank fees and hence the best alternative. However, many indices, such as the

EUROSTOXX 50, are price indices, which are calculated without a correction for paid divi-

dends. This involves implicit issuer fees of some 2–3% annually, which makes the certificates

comparably less attractive. A second type of hidden costs, even for return indices such as the

German DAX, arises from the fact that unlike mutual funds, index certificates are unsecured
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debt of the issuer and hence subject to its credit risk.1 Although the majority of issuers has

a high investment-grade credit rating, the negative value of credit risk is in the range of some

dozens of base points.2

In the past years, a new financial innovation has evolved which combines the advantages of

passively managed mutual funds and index certificates: the exchange-traded funds. These are

funds with lean management and thus cost structures, which are listed at a special market

segment of a stock exchange. In the case of index funds, they exhibit very competitive manage-

ment fees. Furthermore, the funds are separated from the assets of the investment company, so

they face no risk of default.

Nonetheless, even for exchange-traded funds, transaction costs are not zero, and the investor is

furthermore restricted to the passive replication of the index. Thus, there is still a demand for

a closer look at the portfolio selection problem of the small investor who intends to invest into

single stocks rather than one of the mentioned alternatives. In particular, we assume that the

investor has knowledge about the (joint) distribution of the single stock returns (which might

be different from common beliefs of the market) and seeks to collocate his optimal portfolio.

Even if he was able to purchase low-cost index products, his information might imply to follow

a different strategy than replicating the index.

Based upon the seminal works of Markowitz (1952) and Tobin (1958), a number of contribu-

tions in the 1970s provide some insight into the portfolio selection problem when the number

of securities in the portfolio is limited. Mao (1970) analyzes homogenous portfolios with dif-

ferent numbers of securities and finds that relatively few securities are needed to gain most

of the benefits of diversification. Jacob (1974) formulates a portfolio selection problem with a

cardinality-constraint, i.e. a restriction in the number of securities. Brennan (1975) explicitly

accounts for transaction costs and derives the optimal number of securities in the portfolio for

the Sharpe (1963) index model.

1See Stoimenov/Wilkens (2005).

2See Baule/Entrop/Wilkens (2008).
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The major part of the literature treating portfolio optimization in the presence of transaction

costs focuses on linear or at least continuous cost functions. For the case of fixed transac-

tion costs, Patel/Subrahmanyam (1982) and Blog et al. (1983) present algorithms for special

forms of the covariance matrix of returns. In the past decade, some contributions address dis-

crete constraints in the form of transaction costs or lots mainly under computational issues.

Sankaran/Patil (1999) derive an algorithm for the cardinality-constraint portfolio selection with

homogenous correlations. Bienstock (1996) applies branch-and-bound methods for this problem

in the general case. Maringa/Kellerer (2003) propose simulated annealing. Several other heuris-

tics including taboo search, threshold accepting, and genetic programming are applied to similar

problems by Mansini/Speranza (1997), Bertsimas/Darnell/Soucy (1999), Gilli/Këllezi (2002),

Chang (2001) and Jobst et al. (2001). Recently, Lobo/Fazel/Boyd (2007) address the problem

of fixed transaction costs and propose an efficient heuristic algorithm for the maximization of

the expected portfolio return subject to a number of various constraints.

However, little has been said about the particular optimization problem for the small investor

who seeks to maximize his expected utility. In the light of transaction costs, the optimal

portfolio will contain only a selection of all available assets compared to classical Markowitz

theory. Due to this discrepancy, these portfolios harbour a measure of unsystematic risk which

is not rewarded. In this paper we formulate the optimization problem in terms of costs arising

from bearing unsystematic risk on the one hand and the transaction costs on the other hand.

We demonstrate how this problem can be solved algorithmically. In the empirical part we

analyze the trade-off between risk costs and transaction costs for an exemplary investment

universe covering the EUROSTOXX 50 stocks, with a view to the relation between investment

volume and transaction cost size.
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2 Theoretical Model

2.1 Risk Costs versus Transaction Costs

We consider portfolio optimization in an extended Markowitz framework. Particularly, we

reflect on an individual investor who maximizes his single-period expected utility. The corre-

sponding preference function is expressed solely in terms of expected return and variance, which

can be justified by either a quadratic utility function or normally distributed asset returns.3 In

the case of normal returns and exponential utility, the preference function can be stated as

u(µ, σ2) = µ− γσ2, (1)

where γ ≥ 0 is the risk aversion parameter.4

There are n risky assets with random return Xi with expectation µi and standard deviation σi,

i = 1, . . . , n. Furthermore, there is a riskless asset with return r. The investor wishes to invest

a fixed amount of money x in these assets—that is, choose a portfolio with (random) terminal

wealth

P = x0(1 + r) +
n∑

i=1

xi(1 + Xi), (2)

subject to the budget constraint
n∑

i=0

xi = x. (3)

Furthermore, we introduce short-selling restrictions, which is reasonable for the private investor.

Hence, the single investments must be non-negative, that is,

xi ≥ 0 for i = 1, . . . , n. (4)

Associated with any investment xi > 0 are transaction costs such as bank or broker fees.

The simplest type of transaction costs are linear costs. However, it is very common in banking

practice for minimum fees to apply with each transaction, an aspect that is particularly relevant

for the small investor. Hence, a more realistic modelling of transaction costs should take this

3See e.g. Haugen (2003), p. 201-204.

4This is consistent with an utility function U(z) = −e−2γz , see e.g. Sargent (1987), p. 154f.

4



nonlinearity into account. In this paper we allow for transaction costs with minimum fees of

the following type:

c(xi) = max{a, b xi}1{xi>0} with a, b > 0. (5)

Within this type of function, costs are constant at the minimum level up to the amount xi = a/b.

Above this amount, costs increase linearly. The indicator function 1{xi>0} models the discrete

jump from 0 to a when the investment volume increases from zero to greater zero, i.e. when a

security enters into the portfolio.

Transaction costs lower the initial investment volume, or equivalently, lower the expected portfo-

lio return. We assume that the riskless asset is free of transaction costs. This is reasonable since

for instance German government bills can be purchased without costs even in small amounts.

Thus, (2) becomes

P = x0(1 + r) +
n∑

i=1

(xi − c(xi))(1 + Xi). (6)

The investor seeks to maximize the preference function of the portfolio’s expected return and

variance, u(E[P ]/x− 1, V ar[P ]/x2).

It is well known since Markowitz and Tobin that in the absence of transaction costs, the set

of efficient portfolios consists of linear combinations of a tangential portfolio T and the riskless

asset. That is, there is a parameter λT
C ,5 the Sharpe ratio of the tangential portfolio, so that

for a given σ the optimal expected return µT
C(σ) = r + λT

Cσ can be achieved. Let σ∗C be the

optimal choice regarding the investor’s preference function in absence of transaction costs, i.e.

(µ∗C , σ∗C) = arg max u(µT
C(σ), σ). (7)

If transaction costs of the form (5) with a discrete component have to be taken into account,

it will generally no longer be optimal to buy this portfolio. Rather, portfolios with a smaller

number of assets and thus lower transaction costs might be more advantageous.

The crucial point of the transaction cost function is the discrete component: Transaction costs

jump by a finite amount if an asset is taken into the portfolio even at infinitesimally small

5The subscript C indicates classical Markowitz-Tobin portfolios.
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volume. This component is responsible for the problem being no longer convex, so that classical

methods cannot be applied.

However, if the set of assets with strictly positive weights in the portfolio is fixed, the transaction

cost function is convex and thus classical portfolio selection on this subset of assets can be

performed. Hence, a theoretical approach to solve the optimization problem would be to conduct

a classical portfolio selection for each of the 2n possible subsets.6 Accordingly, the set of efficient

portfolios is again the set of linear combinations of the riskless asset and a new tangential

portfolio, which is calculated by the classical method but on a subset of all risky assets. The

situation is demonstrated graphically in Figure 1.7

[Insert Figure 1 about here]

The new tangential portfolio is suboptimal in the sense of its Sharpe ratio λT being lower than

λT
C . Furthermore, the remaining transaction costs lower expected portfolio returns. Together,

the expected return of a portfolio on the new efficient line becomes

µ = µT (σ) = r + λT σ − φ, (8)

where

φ =
n∑

i=1

c(xi)
x

(1 + r + λT σ) (9)

are the relative transaction costs with respect to the total investment volume, compounded to

the end of the period.

From the iso-preference curves µ − γσ2 = const., the first-order condition for the optimal

portfolio is easily derived as

∂µ

∂σ
= 2γσ

!= λT (10)

⇒ σ∗ =
λT

2γ
. (11)

6See Lobo/Fazel/Boyd (2007), p. 353.

7See also Levy (1978), p. 645, for a similar illustration.
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Hence, the existence of transaction costs reduces the optimal preference value by the amount

u(µT
C(σ∗C), σ∗C)− u(µT (σ∗), σ∗) = λT

Cσ∗C − γ(σ∗C)2 − λT σ∗ + γ(σ∗)2 + φ

= λT
C

λT
C

2γ
− γ

(
λT

C

2γ

)2

− λT λT

2γ
+ γ

(
λT

2γ

)2

+ φ

=
(λT

C)2

4γ
− (λT )2

4γ
+ φ

= (λT
C − λT )

λT
C + λT

4γ
+ φ

= (λT
C − λT )

σ∗C + σ∗

2
+ φ. (12)

While the second component clearly comprises the transaction costs, the first component can be

identified as a second type of costs: It describes the decrease in return for bearing unsystematic

risk which is not rewarded. Hence, we interpret this type of opportunity costs as the risk costs

associated with the portfolio.

These two types of costs obviously depend negatively on each other: Higher transaction costs

correspond to a larger number of securities in the portfolio, thus a (possibly) higher Sharpe ratio

of the tangential portfolio and lower risk costs. On the other hand, low transaction costs only

allow for a small number of securities and hence a larger deviation of the tangential portfolio

from the classically optimal one in terms of the Sharpe ratio.

2.2 Portfolio Optimization

As has become clear in the previous section, portfolio optimization in the presence of transaction

costs breaks down to minimizing the sum of transaction costs and risk costs. Once a subset of

securities is fixed, the corresponding tangential portfolio and thus the costs are easily calculated.

The crucial task is to determine the subset of portfolios which minimizes these costs.

To find the optimal subset, a combinatorial search has to be performed. Each single security

can either be in the portfolio or not, so there are 2n possible combinations. If n is not very

small, a combinatorial search is not realistic.8 The problem is NP-hard, hence there is no

8The numerical effort could be reduced by techniques like branch-and-bound, see Lobo/Fazel/Boyd (2007),

p. 353.
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algorithm which solves the problem in polynomial time.9 However, there often are algorithms

or heuristics which do not find the optimum but an approximate solution which can be very

close to the optimum.10 In this paper we adapt a heuristic proposed by Lobo/Fazel/Boyd

(2007) for a similar portfolio selection problem. Their basic idea is to solve a sequence of

convex problems related to the original non-convex problem. The solutions of this problems

converge to a solution which is near the optimum of the original problem.

Transferred to our setting, the algorithm reduces to solving classical portfolio selection problems

with adjusted expected returns. The adjustment in returns reflect the transaction costs as

described above. Let µk
i denote the expected return for the i-th security within the k-th

iteration step. Let furthermore wk = (wk
i )i=1,...,n, denote the vector of weights of the tangential

portfolio for the classical portfolio selection problem with expected returns µk
i in the absence of

transaction costs. The weights correspond to the respective investment volumes via wk
i = xk

i /x.

The algorithm is then defined as follows:

• Define µ0
i = µi − b and calculate w0

• For each k ≥ 0:

– Define µk+1
i = µi −max

{
b, a

(wk
i
+δ)x

}
and calculate wk+1

– If ||wk+1 − wk|| < ε : STOP

Hereby, δ and ε are small, non-negative constants and || · || is a suited vector norm.

Within each step, the transaction costs are linearized to

c(xk+1
i ) = max

{
b,

a

(wk
i + δ)x

}
xk+1

i = max

{
bxk+1

i ,
axk+1

i

(wk
i + δ)x

}
. (13)

The rationale behind this approach is that if the procedure converges, wk+1
i = xk+1

i /x will

approximately equal wk
i , so that if wk+1

i >> δ,

c(xk+1
i ) ≈ max{a, bxk+1

i } (14)

9See Bienstock (1996).

10Besides the deterministic algorithm which is described in the following, probabilistic algorithms like genetic

programming promise some success, see Chang et al. (2000).

8



as desired. The performance of the algorithm is fairly good. Usually it converges after 10–20

iterations. The error with respect to the true solution in terms of the preference function is

lower than 0.01 %.11

3 Empirical Investigation

3.1 Data

In this section, the theoretical results are applied to an exemplary optimization problem of an

investor whose universe consists of the 50 blue chips of the EUROSTOXX 50. Of main interest

is the question of how the number of stocks in the optimal portfolio depends on the transac-

tion costs or the investment volume, respectively. Furthermore, we analyze the proportion of

transaction costs and risk costs.

To obtain realistic input data, the parameters are estimated from historical market prices.

Therefore, we use a two-year history (from 02/09/2002 to 03/09/2004) of closing quotes for the

50 stocks at the Frankfurt stock exchange. We estimate the variance-covariance-matrix directly

using a standard approach. The vector of expected returns is estimated implicitly by applying

the capital asset pricing model.12 Therefore, we use the two-year history to estimate the beta

factors βi for each stock with respect to the index and calculate the implied expected return

via

µi = r + βi(µM − r). (15)

The market premium µM − r is assumed to be equal to 6.5 %, which represents a consensus of

leading academic financial economists (see Welch (2000)). The risk-free rate is identified with

the value r = 2.2% as of November 2004.

11As will become clear in the empirical part, in many cases buying a very small number of assets is optimal.

With a given bound on the number of assets, a complete combinatorial search to find the exact solution becomes

achievable again. Calculating the exact solution in every case where the optimal number of assets is bounded

by 4 (out of 50) yields the quoted figure.

12Jorion (1991) reports evidence that this kind of estimation leads to comparably good results.
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To get an idea of the size of transaction costs, Table 1 gives a brief overview of fees of five major

banks and discount brokers in Germany. These fees apply for internet transactions, whereas

fees for personal transactions are usually higher. However, it is reasonable to assume in our

analysis that the investor seeks to minimize costs and thus chooses the cheapest order channel.

[Insert Table 1 about here]

It is evident that there are significant differences between this representative selection of banks

and brokers. Furthermore, besides the minimum fee and a linear component, several other

variations exist for these and other offerers, particularly maximum fees, degressive shapes,

discrete jumps etc. However, as mentioned, for our purpose the discrete minimum fee is of

main interest, so that the assumed function type (5) is a good model for real transaction costs.

For our empirical study we apply a minimum fee of 10 Euro and a linear component of 0.25 %,

which are representative values according to Table 1.

3.2 Results

Figure 2 shows the risk-return-profile of the 50 stocks and the corresponding efficient frontier. It

becomes evident that the straight line of efficient portfolios is very close to the curved boundary

without the riskless asset in quite a large range. This observation refers back to the assumption

made to calculate the expected returns: Since we assume the capital asset pricing model holds,

all single stocks lie perfectly along the security market line. As, furthermore, the stocks are

fairly positively correlated, a major part of stock variances is explained by the market. Hence,

their positions in the µ-σ-diagram are densest along a straight line parallel to the efficient line

(which is identical to the capital market line in this case), which explains the shape of the

curved boundary. The tangential portfolio has an expected return of 8.4 % and a standard

deviation of 26.1 %.

[Insert Figure 2 about here]

Based upon this data set, we calculate optimal portfolios with respect to transaction costs

and total investment volume. Optimal tangential portfolios and thus optimal subsets of assets

10



are independent of individual preferences. The latter however influence the absolute size of

transaction and risk costs because they determine the amount invested into the riskless asset

and hence the position of the optimal portfolio on the efficient line. The following analysis is

based upon an average investor whose preference function implies that the tangential portfolio

is optimal in the absence of transaction costs.13 Hence, we calculate portfolios with maximum

return, given the standard deviation σ∗C = 26.1%. The results are summarized in Table 2.

[Insert Table 2 about here]

It becomes evident that for very small total investment volumes up to 2,000 Euro, the optimal

number of assets is as small as one. If only one single stock has to be chosen, it is optimal to

invest in the stock with the largest ratio (µi− r)/σi,14 since this stock is the best substitute for

the market portfolio. In doing so, the risk costs remain below one percent. With three stocks,

the risk costs decrease to 0.22 %, which is optimal up to an investment volume of 20,000 Euro.

The optimal average transaction size increases relatively slowly with the investment amount.

For a wide range of investment volumes, values of 5,000 to 10,000 Euro are optimal.15

With the exception of the smallest volume, relative transaction costs are fairly independent of

the investment volume at values between 0.2 % and 0.3 %. (Note that they can fall below the

assumed linear transaction cost component of 0.25%, because the optimal portfolio may involve

investing into the riskless asset which is considered to be free of transaction costs.) Naturally,

the risk costs decrease with the number of assets, so for larger investment volumes above 20,000

Euro, the transaction costs become the major part of the total costs.

These results are based on one representative example. The findings concerning the optimality

of only few securities can be drawn back to the shape of the covariance matrix, which exhibits

moderate to rather high levels of correlations among the single stocks. This leads to a limited

13This is equivalent with an absolute risk aversion of 2γ = (µM − r)/σ2
M = 0.954.

14Provided the absence of estimation errors, this is the stock with the highest Sharpe ratio.

15The observation that only very few securities can be optimal is in line with results of Brennan (1975) within

his index model.
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potential for diversification; in other words, a major part of the total diversification is already

achieved by a small number of stocks. This statement relaxes if the covariance matrix would be

more diagonal dominant. In this case, due to lower correlations, a higher level of diversification

would be achievable and thus a larger number of securities would be optimal also in the presence

of transaction costs. However, the covariance matrix estimated for the EUROSTOXX 50 can

be seen as typical, so the general results presented here will also hold for other markets.

4 Conclusion

The existence of transaction costs forces the small investor to concentrate his money on a rather

small selection of securities. We analyzed the resulting optimization problem in more detail

by reformulating it as the minimization of the sum of two types of costs, the transaction costs

and the risk costs. Risk costs arise with bearing unsystematic risk, which is unavoidable if

the held portfolio differs from the optimal portfolio in classical Markowitz theory. Because of

transaction costs, however, the small investor seeks to reduce the number of assets compared

to this classically optimal portfolio.

The optimization problem is NP-hard. We propose an efficient heuristic which proves to be

very powerful in terms of computational speed as well as accuracy of the found solution. The

empirical analysis showed that the existence of transaction costs can lead to a very small

optimum for the number of stocks in the portfolio.

Our analysis also provides guidelines for choosing between direct investments into the stocks

and alternatives discussed in the introduction: The direct investment is advantageous if the

sum of associated risk and transaction costs is smaller than the annual costs arising with

the alternatives. Furthermore, an alternative is only reasonable if it is based on the same

information of the investor. For instance, if the investor has private information which are

suited to outperform the market, it is not reasonable to undertake a passive index investment.

Based on the assumption that the investor’s information imply to replicate the index, the cost

structures of (classical) mutual index funds, index certificates, and exchange-traded index funds
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can directly be compared with the sum of risk and transaction costs of a direct investment. As

the risk costs can be bounded by 0.8 % even with only one single stock in our example, and

transaction costs decrease sharply with the investment volume, this figure represents the upper

limit for the annual fee of a fund—if it is to have any chance of being advantageous. It has

to be mentioned that not few (even passively managed) mutual funds exceed this threshold.

For index certificates the negative value of credit risk has to be considered, which is below

this level for most of the issuers. Also exchange-traded index funds exhibit low cost structures

(with annual fees down to 0.1% – 0.2 %), which makes them a worthwhile vehicle for small

investors. Usually there are also transaction costs associated with these investments, which

have to added to these fees. Finally the choice between a direct investment and one of the

alternatives depends on the investment volume. Based on our analysis, for given percentage

costs of an alternative, a lower level for the investment volume can be derived, above which a

direct investment is advantageous.
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Figure 1. Portfolio optimization with and without transaction costs: Without transaction costs, the solid

efficient frontier and the tangential portfolio T0 can be achieved. In the presence of transaction costs, only

a selection of assets enters into the portfolio, which leads to the dotted efficient frontier and the tangential

portfolio T . For a given preference function, the parameters of the optimal portfolio change from µ∗C to µ∗ and

from σ∗C to σ∗, respectively.
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Figure 2. µ-σ-diagram for the EUROSTOXX 50: The small squares represent the single stocks. Due to

the CAPM assumption the curved efficient frontier is very close to the efficient line. The parameters of the

tangential portfolio (circle) are µ = 8.4% and σ = 26.1%.
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minimum fee a linear component b

Citibank AG 9.99 Euro 0.00 %

comdirect bank AG 9.90 Euro 0.25 %

Commerzbank AG 24.90 Euro 1.00%

Cortal Consors S.A. 9.95 Euro 0.25%

Deutsche Bank AG 20.00 Euro 1.00%

Table 1. Transaction cost structures for five banks and brokers in Germany as of February 2005.
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x n∗ xi φ ψ φ
φ+ψ

1,000 1 1,000 0.53% 0.79 % 40 %

2,000 1 2,000 0.26% 0.79 % 25 %

5,000 2 2,500 0.32% 0.39 % 45 %

10,000 3 3,300 0.24% 0.22 % 52 %

20,000 3 6,700 0.20% 0.22 % 47 %

50,000 6 8,300 0.19% 0.11 % 63 %

100,000 14 7,100 0.21% 0.04 % 84 %

200,000 19 10,500 0.21% 0.03 % 88 %

500,000 29 17,200 0.21% 0.02 % 92 %

Table 2. Properties of optimal portfolios: investment volume x, optimal number of assets n∗, average transac-

tion size xi, relative transaction costs φ, relative risk costs ψ, transaction costs relative to total costs φ/(φ+ψ).
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